

1

 What is Junior Control 2?

Junior Control 2 is a new Control program from Deltronics,
specially designed for the Junior Serial Interface.

The main window represents the box. The program can be used
with or without an interface. Inputs can be simulated and outputs
switched on and off by the click of a mouse.

Procedures can be built, consisting of sequences of commands.
Commands can switch outputs and motors on and off, reverse
motors, respond to inputs, and read analog sensors. For more
complex tasks, procedures can call other procedures (sub-
procedures) Simple arithmetic can also be performed.

Junior Control 2 also features Virtual Models, which are on
screen simulations of traffic lights, juggling clown etc. which
allow experimentation without having to build physical models.
(for more on Virtual Models, see later in this manual)

Procedures can be viewed on screen while they are running, and
a trace feature allows the progress of the procedure to be
followed.

A commands window contains all the key words necessary for
building procedures; clicking on the words, makes them appear
in the edit window. This cuts down on typing, and reduces
errors. This way, procedures that work first time can be built
very quickly.

2

Installation

System requirements

The program will run on any system capable of running
Windows 95 or above.
To use an interface, one free COM port is required.

Place the CD in the d: drive and Select Start Run...
and type d:\setup.exe in the box and click OK.

During the setup procedure you will be asked for your name,
Company (or School) name, and serial number. The serial
number can be found on the CD and on the envelope containing
the CD.

Please read the copyright notice on the envelope.

To view the serial number after installation, select About Junior
Control... from the Help menu.

Running Junior Control

Select Start.. Programs.. Junior Control.. Junior

There are two Windows, the Main Window and the Procedures
Window.

3

 The Main Window

Inputs

On the left of the window is a row of 4 LEDs corresponding to
the input LEDs on the box; each has a label which can be used
to identify the input and a counter which can count the number
of changes on the input.
If you have a box connected, the LED will indicate the state of
the real inputs on the box.

NOTE : When you first run the software, the interface is set to
'none'. To configure the program for your interface, select
Interface... from the Settings Menu, this brings up the Interface
dialogue

4

The Interface dialogue

Select Junior Serial Interface and select the COM port to which
you have connected it. The box must be connected and switched
on, otherwise you will get an error message To save the settings
for future use, check the 'Save Settings' check box. Then you
will not have to repeat the process next time you run Junior
Control.

Outputs

Back to the Main Window - On the right is another set of LEDs
representing the outputs. Click on the centre of the LED to turn
it on or off, If you have a box connected and enabled, the output
on the box will go on or off as well.
The outputs also have labels which can be used to identify them.

Motors

Also on the right are two Motor Icons; each icon is composed of
three controls, the main motor icon turns the motor on and off
and the arrow icons determine the direction. Again, if you have
a box connected, and a motor connected to it, the motor will
turn.

5

Analogue

At the bottom of the main window there is a numerical and bar
graph display of the four analogue channels. (this only appears
when the interface is set up and connected)

Buttons

in the bottom left corner are two buttons

Stop - turns off all the outputs and stops any procedure that is
running

Exit - Exits the program, if you have un-saved procedures you
will be asked if you want to save them first.

Speed (Power) Scroll Bars

Next to the motors are scroll bars which can be used to set the
speed of motors or the brightness of lamps if they are connected
to the motor sockets.

The Procedures Window

This is where the procedures are created and edited. To start
writing a new procedure, Click the Procedures button and select
New... from the pop-up menu or Select New... from the File
menu in the Procedures window. Type the name of your new
procedure and click OK.
A window for editing your procedure is opened.

6

You can have several procedures open at once. To edit a
procedure, just click on the title bar of its window, or select the
procedure name in the Window menu, or click the Procedures
button and select Change... from the pop-up menu.
Click the Commands button to bring up the Commands
Window, which contains all the key words necessary for
building a procedure.

The Commands Window

Try this simple procedure :-

 Switch On 1
 Wait 1
 Switch Off 1
 Wait 1
 Switch On 1
 End

you can click on the buttons in the commands window, or type
on the keyboard. If you are using the keyboard, remember to put
spaces in-between each word or number.

7

To run the procedure, click the Procedures button and select
Run... from the pop-up menu, then select the name of the
procedure. Alternatively select Run name from the Run Menu
(e.g. if your procedure was called test, this menu item will be
Run test)

Output 1 should go on and off.

Now select Trace from the Run menu, and run the procedure
again; this time the lines in the procedure will be highlighted as
the program encounters them.
To turn off Trace, select it again in the Run menu.

Inputs - using the If statement

Type in the following procedure :-

 Repeat Forever
 If input 1 On then Switch On 4
 If input 1 Off then Switch Off 4
 next
 end

We ask the program to check the state of an input and do
something as a result, using the If ... Then... statement

The program only does this once, so if you want to continuously
monitor an input you have to put the statement inside a loop.
That is the function of the Repeat Forever and Next commands

Run the procedure. Output 4 should go on when input 1 is on
and off when input 1 is off.

To stop the program, press the STOP button in the bottom left
of the Control Window.

8

You can simplify this procedure by writing :-

 Repeat Forever
 If input 1 on switch on 4
 Else switch off 4
 next
 end

this is an If... Then... Else... statement. The program performs
the Else part if the If part is NOT true; in this case if input 1 is
not on.
Notice that the Then word has been left out, that is because it is
optional.

Saving procedures

To save a procedure, first, select it by clicking in its window title
bar, or by selecting it in the Window menu. Then select
Save/Save as... in the File menu. Select the destination folder
and click OK. To save the Input and Output labels with the
procedure, make sure the Save Labels item is ticked.

Repeat Loops

Repeat loops are very useful elements in building most
procedures. With a repeat loop you can make the procedure
repeat a series of commands a fixed number of times, or until a
certain event happens or forever (until the STOP button is
pressed)

The basic forms are :-

 Repeat
 [Statement]
 [Statement]

 Until [Condition]

9

For Example

 Repeat
 Switch On 1
 Wait 5
 Switch Off 1
 Wait 5
 Until Input 3 On

This flashes Output 1 on and off until input 3 is on.

 Repeat n
 [Statement]
 [Statement]

 Next

e.g.
 Repeat 4
 Motor C Forward
 wait 2
 Motor C Off
 wait 2
 Next

The commands in-between Repeat and Next are repeated four
times. Notice that they have spaces in front of them to put them
further to the right, this helps to make your procedure more
readable by clearly identifying which parts are inside the loop
and which parts are not. This is known as indenting.
The program ignores spaces, but obviously not inside key words
e.g. Sw itch is not allowed.

10

Finally there is the Repeat Forever statement

 Repeat Forever
 [Statement]
 [Statement]

 Next

This repeats everything in-between Repeat and Next 'Forever'
i.e. until you press the STOP button.

Output Labels - Giving names to the outputs

You can label an output by clicking on it and then typing the
name. You can then refer to it by that name in a procedure. For
example, if you label some outputs Red, Amber and Green, this
procedure will implement a traffic light sequence.

 Switch Off All
 Switch On Red
 Wait 5
 Switch On Amber
 Wait 1
 Switch Off All
 Switch On Green
 Wait 5
 Switch Off Green
 Switch On Amber
 Wait 1
 Switch Off Amber
 Switch On Red
 End

NOTE: The wait values should be set to seconds (Select
General... from the Settings menu to change the wait values to
Seconds or Tenths).
The procedure should go through the sequence from red to green
and back to red again. The first line makes sure that all the
outputs are off before starting.

11

Example - Pelican crossing

This example should help illustrate some of the basic features of
the Junior Control language. For simpler examples see the
Examples section.

DELTRONICS can supply a Pelican crossing model.

Specification -

We all know what a pelican crossing does, but it helps to put it
down in black and white before we start trying to write any
procedures.

Normally, the traffic lights are on Green, and the red man is on.

If the button is pressed, the traffic lights will go to amber, and
then to red.

The red man then goes off and the green man comes on.

After a delay, the traffic lights go to flashing amber while the
green man flashes.

Finally the traffic lights go to green while the green man goes
off and the red man comes on.

This example is best done using sub procedures, that way we
can break the task down into smaller parts which are easier to
program.

These are the procedures

Pelican - The main procedure

sequence - goes through the whole sequence from red to green
and back again.

Flash - flashes the amber light and green man

Bleep - sounds the bleeper while it is safe to cross.

12

Because there aren’t enough outputs on the Junior Serial
Interface to do everything, we have to use the motor sockets for
the red and green man. Motor C is the green man, and motor D,
the red man.

Here's the main procedure - Pelican

 Switch Off All
 Switch On Green
 Motor D Forward
 Repeat Forever
 if input 1 on then sequence
 Next

The first line switches off all the outputs so that everything is in
a known state. Then the green light and red man are switched
on.

Then we simply go round in a loop testing input 1, if it is on, we
go through the sequence.

The sequence procedure

 Switch off Green
 Switch on Amber
 Wait 30
 Switch Off Amber
 Switch On Red
 Motor D Off
 Motor C Forward
 Bleep
 Switch Off Red
 Flash
 Motor D Forward
 Switch On Green
 end

13

First, the light goes from green to amber, then a pause of three
seconds (Wait 30) this assumes that the wait value is set to
tenths of a second. Select General... from the Settings menu to
bring up a dialogue to set this.
Then from amber to red, and the man goes from red to green.
Then call another sub procedure, Bleep which operates the
bleeper (the number and duration of bleeps will determine the
time allowed to cross the road)
Then switch off the red light and call another sub procedure
Flash which flashes the green man and the amber light.
Finally, switch on the red man and the green light, to return to
the original state.
Notice that all procedures must end in an end statement. when
the procedure gets to the end statement, it returns to the
procedure that called it.

Now we need to write the procedures Bleep and Flash

Bleep

 Repeat 20
 Switch on Bleeper
 Wait 5
 Switch off Bleeper
 Wait 5
 Next
 End

14

Flash

 Repeat 10
 Switch On Amber
 Motor C Forward
 Wait 5
 Switch Off Amber
 Motor C Off
 Wait 5
 Next
 End

Remember that the wait values must be set to tenths. Select
General... from the Settings menu.

Also, remember to label all the outputs - Red, Green, Amber,
Bleeper.

15

 Examples

The following pages contain eight examples which
introduce most of the features of the Junior Control
language.

Any additional features can be found in the command
reference and in the program help.

16

1. Lighthouse

This is a simple procedure for turning a light on and off.
Build the lighthouse from Lego or similar and attach a bulb to
the top. Connect the bulb to one of the output sockets on the
Control It or Serial Interface.

Build the following procedure (call it 'light')

 Switch On 2
 Wait 1
 Switch Off 2
 Wait 1
 Switch On 2
 Wait 1
 Switch Off 2
 End

The procedure assumes that Output 2 will be used. Make sure
that the wait values are set to Seconds (select General... in the
Settings Menu). Run the procedure. (Remember to select the
interface from the Configure Menu) The light should flash on
and off twice.

Loops - making the procedure repeat

You can make the procedure repeat any number of times by
using Repeat.

Change the procedure to: -

 Repeat 10
 Switch On 2
 Wait 1
 Switch Off 2
 Wait 1
 Next
 End

17

Lighthouse (continued)

Run the procedure, and the light will flash on and off ten times.

Using Repeat, the light flashed ten times instead of twice,
but has used one less line to do it. The word Next
indicates the end of the loop.

You can put any number after Repeat or you can use Repeat
Forever, to make the light flash continuously. In this case
the program can be stopped by using the STOP button.

Labels - giving names to the Outputs.

Click on the label next to Output 2 and type the word LAMP.

Now change the procedure to: -

 Repeat 10
 Switch On Lamp
 Wait 1
 Switch Off Lamp
 Wait 10
 Next
 End

Saving the Procedure.

Select the procedure by clicking on its title bar or by selecting it
from the Window menu Select Save/Save As from the File
Menu. Select the destination folder and click OK.

18

2. Traffic lights

This procedure goes through a traffic light sequence.

First, label the lower three outputs, Red, Amber and Green.
Then build this procedure :-

 Switch Off All
 Switch On Red
 Wait 4
 Switch On Amber
 Wait 1
 Switch Off Red
 Switch Off Amber
 Switch On Green
 Wait 4
 Switch Off Green
 Switch On Amber
 Wait 1
 Switch Off Amber
 Switch On Red

Run the procedure, and it should go through the sequence from
Red to Green and back to Red again. The first line makes sure
that all the lights are off before starting.

To make the sequence repeat continuously, use Repeat as
follows:-

 Switch Off All
 Repeat Forever
 Switch On Red

 Switch Off Amber
 Next
 End

19

3. Using Inputs - A Simple Alarm

For this procedure, you will need a buzzer and a magnetic
proximity switch or a microswitch.

Attach the proximity switch to a door or window so that the
switch is On when the door is shut and Off when it is open.
Connect it to one of the inputs, say Input 1. Connect the buzzer
to one of the outputs, say Output 4; you can label the Output,
'Buzzer'.

Build the following procedure :-

 Repeat Forever
 If Input 1 On Then Switch Off Buzzer
 Else Switch On Buzzer
 Next
 End

Run the procedure, and the buzzer should sound when the door
is opened. You can use labels on the inputs as well, therefore if
you label Input 1 as 'Door' , you can say :-

 If Door On Then Switch Off Buzzer

Using Sub Procedures.

Suppose you want the buzzer to go on and off instead of
sounding a continuous tone.

Build this procedure (call it Buzz)

 Repeat Forever
 Switch On Buzzer
 Wait 5
 Switch Off Buzzer
 Wait 5
 Next
 End

20

Alarm (continued)

Then modify the Alarm procedure to :-

 Repeat Forever
 If Door On then Switch Off Buzzer
 Else Buzz
 Next
 End

Adding other inputs

You can add other sensors to the alarm. for example a pressure
mat. Connect the pressure mat to one of the inputs, and label
that input 'Mat'.

Modify the procedure to

 Repeat Forever
 If Door On Then Switch Off Buzzer
 Else Buzz
 If Mat Off Then Switch Off buzzer
 Else Buzz
 Next
 End

Notice that the pressure mat is normally 'Off' but goes to 'On'
when it is stepped on.

21

4. Car Park

This procedure counts the cars going into and coming out from a
car park. You can use a microswitch or a light switch to detect
the cars going in and out. Two bulbs are needed for the
'SPACES' and 'FULL' signs.

Build this procedure:-

 Repeat Forever
 Let A = Count 1
 Let B = Count 2
 If (A-B) > 9 Then FullSign
 Else SpacesSign
 Next
 End

and the Sub Procedures FullSign :-

 Switch On Full
 Switch Off Spaces
 End

and SpacesSign :-

 Switch On Spaces
 Switch Off Full
 End

Label one of the outputs 'Spaces' and another 'Full'. The
program assumes that there are ten spaces in the car park.

22

Car Park (continued)

This procedure uses two variables A and B. Variables are used
whenever you need to store or remember a number or perform
calculations - in this case A is the number of cars that have
entered the car park and B is the number of cars that have left.
Here, the 'If' command is used to test the result of a comparison.
i.e. "is (A-B) greater than 9 ?"
You can read more about how Junior Control performs
arithmetic and comparisons in the Arithmetic section.

Note that the sub procedures FullSign and SpacesSign, only
have two lines each (excluding the end statement) The Car Park
program could have been written as one procedure like this :-

 Repeat Forever
 Let A = Count 1
 Let B = Count 2
 If (A-B) > 9 Then
 Switch On Full
 Switch Off Spaces
 Else
 Switch On Spaces
 Switch Off Full
 EndIf
 Next
 End

23

Car Park (continued)

This is the long form of the If... Then... Else.. construction
which is :-

If [condition] Then
 [statement]
 [statement]

 Else
 [statement]
 [statement]

 EndIf

The important rule is that the first statement in each block must
be on the line after the 'If' or the line after the 'Else'.
The EndIf statement must also be present.

The Else block is optional. i.e. you can have :-

 If [condition]
 [statement]
 [statement]

 EndIf

24

5. Lift

This program operates a simple two floor lift.

Motor and Gearbox
Drum

Microswitch

Microswitch

Lift
Cage

To build the lift you will need a motor (geared) and a pulley or
drum (cotton reel or similar). The lift cage will need to run
smoothly in a set of guides. You will also need two
microswitches or magnetic proximity switches.
DELTRONICS can supply a lift model.

25

Lift (continued)

First write a simple procedure to send the lift to the top.
Connect the motor to Motor C and the top microswitch to Input
2.

Build this procedure (call it 'Up')

 Repeat
 Motor C Forward
 Until Input 2 On
 Motor C Off
 End

This procedure uses a simple example of feedback, i.e. the effect
of an Output is monitored by an input in order to decide when to
switch the output on or off .
Add two push buttons; one for up and one for down. Connect
them to Inputs 3 and 4, then write the overall lift procedure as
follows :-

 Repeat Forever
 If Input 3 On then Up
 If Input 4 On Then Down
 Next
 End

Before you run this, you should also write the procedure 'Down'
which is very similar to 'Up'

 Repeat
 Motor C Reverse
 Until Input 1 On
 Motor C Off
 End

(Input 1 should be connected to the bottom microswitch)

26

Lift (continued)

Improvements – try adding a light to each floor which comes on
when the lift arrives.

27

6. Street Lights

This procedure automatically switches on a street light when it
becomes dark. It uses the Analogue Inputs. You will need a light
level sensor.

Connect the sensor to Analogue Channel 1, and a light bulb
representing the street light to Output 1.

Build this procedure:-

 Repeat Forever
 If Value 1 < 50 Then Switch On 1
 Else Switch Off 1
 Next
 End

When you cover the light sensor the light should come on;
uncover it and the light should go out. (You may have to
experiment with the value in line 2 to get it right).

28

7. More analogue - Temperature Control - A
Greenhouse

This procedure is a temperature control system for a greenhouse.
You will need a 5W bulb as a heater (the small bulbs in the
Deltronics accessory pack are not suitable for this) and a
temperature sensor.

Build a model greenhouse (don't make it too large or it will take
a long time to warm up) and place the bulb and temperature
sensor inside it. Ideally, for demonstration purposes the
temperature sensor should be located at the top,
above the lamp, so that it warms up quickly. In a real greenhouse
it should be located low down so that the whole greenhouse
warms up before the heater switches off.

Temperature
Sensor

Bulb

Greenhouse

Connect the bulb to Output 1 and label it 'Heater'. Connect the
temperature sensor to Analogue Channel 1. Select General...
from the Settings Menu and set degrees C instead of 0 to 100% .

29

Greenhouse (continued)

Build this procedure:-

 Repeat Forever
 If Value 1 > 24 then Switch Off Heater
 Else Switch On Heater
 Next
 End

It will take a few minutes to observe the system switching on
and off, but eventually it should stay within a degree or two of
the value that you set.

30

8. Level Crossing

This program operates a level crossing barrier and lights. You
will need a train set (or at least a short length of track), a
magnetic proximity switch or microswitch to detect the train
coming past a certain point on the track, a motor and gearbox for
the barrier, another switch to detect when the barrier is down,
some bulbs and a buzzer.

Connect the train detecting switch to, say Input 1, the barrier
motor to motor A and the 'barrier down' switch to Input 2.

Write the following procedure:-

 Repeat
 Until Input 1 On
 Motor C Forward
 Repeat
 Flash
 Until Input 2 On
 Motor C Off
 Repeat 20
 Flash
 Next
 Motor C Reverse
 Wait 20
 Motor C Off
 End

Sub procedure 'Flash'

 Switch On 3
 Wait 3
 Switch Off 3
 Wait 3
 End

31

Level crossing (continued)

For these procedures, the wait values should be set to tenths of a
second. (select General... from the Settings Menu)

The first two lines wait for the train to activate the switch. The
next part starts winding down the barrier and flashing the lights.
The barrier motor is stopped when the 'barrier down' switch is
activated, but the lights continue to flash twenty more times.
The motor is then reversed to wind up the barrier. (The wait
value here will depend on the speed of the motor)

The number of repeats after the barrier has come down should
be enough to let the train go past.

The duration of flashes should be kept short, otherwise the
barrier could over-run before it is switched off.

What happens if the train slows down or stops after it has
triggered the switch but before it has reached the crossing?

To overcome this problem, put another switch on the far side of
the crossing and change Repeat 20 to Repeat Until
Input n On where n is the input to which the sensor is
connected.

Improvements

Modify the procedure 'Flash' to operate two lights to flash
alternately (as in a real level crossing). You could also add a
buzzer here.

32

Command Reference

Clear

Clear, clears a specific input counter,

e.g. Clear 3

Count

Count represents a count of the number of Off to On transitions
on an input since the last Clear (either by command or by the on
screen button) The form is Count n , where n is the input
number.

Count can be used in any arithmetic expression or logical
expression

e.g. If Count 3 > 20 Then Switch Off 2

 Let X = Count 3

 Let Y = Count 1 + Count 2

33

Else

(see If)

End

Every procedure must end in an end command. In the main
procedure, it tells the procedure to stop. In a sub procedure, it
tells the procedure to return to where it was called from. If you
leave out End,
the compiler will assume it, but it is good practice to put and end
statement after all your procedures.

EndIf (see If)

EndWhile (see While)

EndLoop (see Loop)

Forever

Forever is a keyword used in conjunction with Repeat (see
Repeat)

Forward

Forward is a keyword used in conjunction with Motor (see
Motor)

34

If

If, along with Then is used to construct conditional statements.
The general form is:-

If [Condition] then [Command]

e.g. If Input 1 On Then Switch On 3
 If Value 4 < 40 Then Motor C Reverse

The 'Then' is optional, i.e.

 If Input 1 On Switch On 3

is the same as: If Input 1 On Then Switch On 3

You can test more than one input at once using the 'and' and 'or'
keywords e.g.

 If Input 1 On and Input 2 On Switch on 2
 If Input 3 On or Input 2 On Motor C forward

If you want to perform more than one action in an If command,
you can use the long form of the If statement which has the
form:-

 If [condition]
 [statement]
 [statement]

 EndIf

The statements must start on the line after the If [condition],
otherwise the compiler will treat it as the short form. You must
include the EndIf to show where the block of statements ends,
and the rest of the procedure begins.

35

An If statement can be used on its own or with an Else
statement.

Else

Else is always used in conjunction with an If statement. An If..
Then.. Else.. construction carries out one action if the 'if'
condition is true or another if it is false.

e.g. If Input 1 on then Switch on 4
 Else Switch off 4

The Else must be on the line which immediately follows the If.

Long form of If.. Then.. Else..

If.. Then.. Else.. also has a long form which is:-

 If [condition]
 [statement]
 [statement]

 Else
 [statement]
 [statement]

 EndIf

The statements following Else must start on the line after the
else, and you must include the EndIf.

36

Input

Input is always used in conjunction with If, Until or While to
test the state of an input bit.

e.g. If Input 2 On Then

 If Input 2 Off Then

 Until Input 4 On

You can test more than one input at once using the 'and' and 'or'
keywords e.g.

 If Input 1 On and Input 2 On Switch on 4
 If Input 3 On or Input 4 On Motor D forward

Inputs

Inputs is used to check the state of all the inputs at once, and is
always used in conjunction with If, Until or While

e.g. If Inputs = 12 Then Switch on 3
 Else Switch off 3

If the binary byte represented by the inputs is '12 decimal' then
output 3 will be switched on.

 '>' and '<' are not allowed with this command, only '='.

37

Let

Let is used to assign a value to a variable. Variable names can
consist of numbers and letters, but must start with a letter.

The general form is :-

Let [Variable] = [expression]

Variable is any variable name, and expression can be a constant,
another variable, or an arithmetic expression,

e.g. Let floor = 1
 Let items = items + 1
 Let B = F / 3

Let is optional, i.e.

 floor = 1
is the same as : Let floor = 1

See the section on Arithmetic for more details.

Loop

Loop can be used to construct a continuous loop, and is an
alternative form of a Repeat Forever loop (see Repeat)

The form is :-

 Loop
 [statement]
 [statement]

 EndLoop

The only way to stop a Loop is to press the STOP button.

38

Motor

Motor is used to set the state of one of the two motors to Off,
Forward or Reverse,

e.g. Motor D Forward
 Motor C Reverse
 Motor D Off

Next

Next is used in conjunction with Repeat (see Repeat)

Off

Off is used in conjunction with Input, Switch or Motor (see the
relevant commands)

On

On is used in conjunction with Input or Switch (see Input and
Switch)

Or

Or can be used when testing inputs e.g.

 If input 1 on or Input 2 On Then Switch on 4

Switches output 4 on if either input 1 or input 2 is on.

Or is also used in relational expressions (see Arithmetic section)

39

Output

Output is used to output a byte to the outputs,

e.g. Output 14 causes the binary equivalent of 14 to appear on
the outputs, overriding any previous Switch On or Switch Off
commands. Constants or variables can be used,

i.e. Let A = 14
 Output A

Has the same effect as Output 14

See the section on Arithmetic for more information on variables.

40

Power

Power is used to set the power (speed) of one of the eight
outputs or one of the four motors. It can be used to control
motor speed or lamp brightness, if the lamp is connected to the
motor sockets.

The general form is :-

 Power [n] [p]

n is the motor reference and p is the power,

e.g.
 Power C 15
 Power D 31

Power values can range from 0-31. 0 is stationary and 31 is full
speed.

Note: The relevant Motor must be switched on before this
command can take effect.

Repeat

Repeat is used along with Until or Next to construct loops.

There are three general forms:-

(a)
 Repeat
 [statement]
 [statement]

 Until [Condition]

This repeats all the statements until the condition becomes true.

41

Condition can be a reference to Inputs, Input counts or Values,
or an arithmetic expression.

e.g. Until Value 2 > 28
 Until Count 3 = 100
 Until A = 7
 Until X=Y+3
 Until Input 2 On

(b) Repeat n
 [statement]
 [statement]

 Next

This repeats all the statements in-between Repeat and Next, n
times. For example:-

 Repeat 4
 Switch on 1
 Wait 1
 Switch off 1
 Wait 1
 Next

Flashes output 1 on and off four times.

(c) Repeat Forever
 [statement]
 [statement]

 Next

Repeats all the statements in-between Repeat and Next,
'Forever' i.e. until the STOP button is pressed.

42

Reverse

Reverse is used in conjunction with Motor (see Motor)

Switch

Switch is used to switch on or off one of the outputs. Constants
or variables can be used, e.g.

 Switch On 2
 Switch Off 4

 X=3
 Switch On X

is the same as: Switch On 3

You can also switch on or off more than one output at a time e.g.

 Switch On 2,4,1

Then (see If)

Until (See Repeat)

Value

Value is used to read one of the four analogue channels and is
always used in conjunction with If, Until, While or Let

e.g. If Value 1 > 50 Then Switch On 3

43

Value returns values of 0-100 for an input voltage range of 0 to
1.8V. You can make the Value command return a value in
Degrees C

Select General... from the Settings menu and check the Degrees
C button in the Analogue Values box.
Analogue values can also be assigned to variables (See
Arithmetic).

Wait

Wait causes the program to wait for a specified number of tenths
of a second or seconds.
To set Tenths or seconds, Select General... from the Settings
menu and select Tenths or Seconds in the Wait Values Box.

 e.g. Wait 20

While

While is used in conjunction with EndWhile to construct loops.
The general form is :-

 While [condition]
 [statement]
 [statement]

 EndWhile

Condition can be a reference to Inputs, Input counts or Values,
or an arithmetic expression.

e.g. While Input 2 On
 While Count 3 < 100
 While A = 0
 While X<Y+3

The program will repeat the set of statements while the
condition is true ie until the condition becomes false.

44

Arithmetic

Junior Control can perform simple arithmetic.

Variables

Variables are created using the Let command (see Command
Reference). You must first create a variable before you can use
it, otherwise you will get a 'Variable not found' error.

e.g. Let A = B + 4

would result in an error if B had not previously been created
using a Let command.

The general form of an arithmetic statement is :-

 Let [variable] = [expression]

expression can be a constant e.g. Let A = 6

Or another variable e.g. Let A = B

Or a general expression.

e.g. a simple expression has the form

 [operand] [operator] [operand]

Each operand can be a variable or constant and operator can be
one of

 + - * /

45

The operators perform addition, subtraction, multiplication and
integer division respectively. (Integer division discards the
remainder e.g. 9 / 4 = 2)

The Let command can be used to assign one of the Analogue
values to a variable.

e.g. Let V = Value 2

or Let V = Value 1 + 12

Variables can be used as parameters for certain commands.

e.g. Let VAR = 3
 Switch On VAR

Or

 Output VAR

Relation Operators

Relation operators can be used in If, Until or While to test for
various conditions e.g. X > 6

The four relational operators are >, <, = and #.

 > - "Greater Than"
 < - "Less Than"
 = - "Equals"
 # - "Not Equal to"

46

Examples -

 If Count 1 > 10

 Until X=Y*(A+3)

 If Floor # 1

