What is Control It PC?

Control It PC 1s a new Control program from Deltronics based
on Control 95. The same familiar language statements and on
screen box are used, but there are several new features and
improvements.

The language itself is considerably more powerful and versatile,
and a lot faster.

Features previously offered as separate programs (such as
Virtual Models and Junior Control) are now integrated into one
package.

Procedure editing is now a lot easier, and a procedure step and
trace feature allows you to follow the progress of the procedures
line by line as they run.

Procedures can now write output to the screen e.g. Write(""the

motor is on")

Whether you're a new user or upgrading from Control95,
Control It PC 1s easy to use.

Installation

System requirements

The program will run on any system capable of running
Windows 95 or above, having at least SMB RAM and 4MB
free disk space.

To use an interface, one free COM port is required.

Place the Setup Disk in the a: drive and Select Start Run...
and type a:\setup.exe in the box and click OK.

During the setup procedure you will be asked for your name,
Company (or School) name, and serial number. The serial

number can be found on the disk and on the envelope containing
the disk.

Please read the copyright notice on the envelope.

To view the serial number after installation, select About
Control It... from the Help menu.

Running Control It PC

Select Start.. Programs.. Control It.. Control It

There are two main Windows, the Control Window and the
Procedures Window.

Control It PC. main windows

The Control Window

ControlWindow

Settings: “Window Help

il OUTPUTS

T O i@ (p
| O | EQ@ «»
8 so g
I_ . SERIAL INTERFACE . "
T ©OE E@ (p
[O¢f ! EQ «»
[T O 1O
I | E@ O

@ Exit Sfepj l Commands Procedures |

Inputs

On the left of the window is a row of 8 LEDs corresponding to
the input LEDs on the box; each has a label which can be used
to 1dentify the input and a counter which can count the number
of changes on the input.

If you have a box connected, the LED will indicate the state of
the real inputs on the box.

NOTE : When you first run the software, the interface is set to
'none'. To configure the program for your interface, select
Interface... from the Settings Menu, this brings up the Interface
dialogue

The Interface dialogue

‘Serjal Interface

Serial Adapter

Junior Serial Interface
Commaotion Serial Interface

Digital Serial Adapter =
~COM Part
i+ COM1 i~ COMS
i~ COME
€ COM2 [Enable now
{~ COM3 = COM7
" COM4 " COMS [~ Sawve Seftings

0K X Cancel |

Select the interface from the list and select the COM port to
which you have connected it. If the box is connected and
switched on, check the 'Enable now' check box. To save the
settings for future use, check the 'Save Settings' check box.

The screen appearance will change to reflect the type of box that
you selected.

If you selected Junior Serial Interface, the window will look
like this :-

Controlwindow
Settings Window Help

Exit | Step 3 Commands Procedures |

Outputs

Back to the Control Window - On the right is another set of
LEDs representing the outputs. Click on the centre of the LED
to turn it on or off, If you have a box connected and enabled, the
output on the box will go on or off as well.

The outputs also have labels which can be used to identify them.
Motors

Next to the outputs are four Motor Icons; each icon is composed
of three controls, the main motor icon turns the motor on and off
and the arrow icons determine the direction. Again, if you have
a box connected, and a motor connected to it, the motor will
turn.

Analogue

If you selected an interface that has analogue channels, there
will be a small window with numerical and bar graph displays of
the four analogue channels.

Buttons
in the bottom left corner are three buttons

Stop - turns off all the outputs and stops any procedure that is
running

Exit - Exits the program, if you have un-saved procedures you
will be asked if you want to save them first.

Step - Used to step through a procedure, one line at a time (see
Procedures section)

Speed (Power) Scroll Bars

Select General... from the Settings menu. Select Scroll Bars
from the Display section and click OK.

The output labels will be replaced by scroll bars which can be
used to set the speed of motors or the brightness of lamps
connected to the outputs.

The Procedures Window

This is where the procedures are created and edited. To start
writing a new procedure, Click the Procedures button and select
New... from the pop-up menu or Select New... from the File
menu in the Procedures window. Type the name of your new
procedure and click OK.

A window for editing your procedure is opened.

You can have several procedures open at once. To edit a
procedure, just click on the title bar of its window, or select the
procedure name in the Window menu, or click the Procedures
button and select Change... from the pop-up menu.

Click the Commands button to bring up the Commands
Window, which contains all the key words necessary for
building a procedure.

The Commands Window

Lot | Input | value On
Then Switch Motor Oft
Output Power Wait Forward
Else Inputs Let Reverse
Repeat Until Forever MNext
Count Clear All End
and or Endif Write
o(1)2(3|4|5|6|7|8|9]|>)|<«
=l +|-|*|t|A|B|C|D| . | Enter

Try this simple procedure :-

Switch On 1
Wait 1
Switch Off 1
Wait 1
Switch On 1
End

you can click on the buttons in the commands window, or type
on the keyboard. If you are using the keyboard, remember to put
spaces in-between the each word or number.

To run the procedure, click the Procedures button and select
Run... from the pop-up menu, then select the name of the
procedure. Alternatively select Run name from the Run Menu
(e.g. if your procedure was called test, this menu item will be
Run test)

Output 1 should go on and off.

Now select Trace from the Run menu, and run the procedure
again; this time the lines in the procedure will be highlighted as
the program encounters them. You can also select Step from the
Run menu, then when you run the procedure you can step it
through one line at a time by pressing the Step button in the
Control Window.

To turn off Step or Trace, select it again in the Run menu.
Inputs - using the If statement
Type in the following procedure :-

Repeat Forever
If input 1 On then Switch On 4
If input 1 Off then Switch Off 4
next
end

We ask the program to check the state of an input and do
something as a result, using the If ... Then... statement

the program only does this once, so if you want to continuously
monitor an input you have to put the statement inside a loop.
That is the function of the Repeat Forever and Next commands

Run the procedure. Output 4 should go on when input 1 is on
and off when input 1 is off.

To stop the program, press the STOP button in the bottom left
of the Control Window.

You can simplify this procedure by writing :-

Repeat Forever
If input 1 on switch on 4
Else switch off 4

next

end

this is an If... Then... Else... statement. The program performs
the Else part if the If part is NOT true; in this case if input 1 is
not on.

Notice that the Then word has been left out, that i1s because it is
optional.

Saving procedures

To save a procedure, first, select it by clicking in its window title
bar, or by selecting it in the Window menu. Then select
Save/Save as... in the File menu. Select the destination folder
and click OK. To save the Input and Output labels with the
procedure, make sure the Save Labels item is ticked.

Repeat Loops

Repeat loops are very useful elements in building most
procedures. With a repeat loop you can make the procedure
repeat a series of commands a fixed number of times, or until a
certain event happens or forever (until the STOP button is
pressed)

The basic forms are :-

Repeat
[Statement]
[Statement]

Until [Condition]

For Example

Repeat
Switch On 1
Wait 5
Switch Off 1
Wait 5

Until Input 3 On

This flashes Output 1 on and off until input 3 is on.

Repeat n
[Statement]
[Statement]

e.g.
Repeat 4
Motor A Forward
wait 2
Motor A Off
wait 2
Next

The commands in-between Repeat and Next are repeated four
times. Notice that they have spaces in front of them to put them
further to the right, this helps to make your procedure more
readable by clearly identifying which parts are inside the loop

and which parts are not. This is known as indenting.

The program ignores spaces, but obviously not inside key words

e.g. Sw itch is not allowed.

10

Finally there is the Repeat Forever statement

Repeat Forever
[Statement]
[Statement]

This repeats everything in-between Repeat and Next 'Forever'
1.e. until you press the STOP button.

Output Labels - Giving names to the outputs

You can label an output by clicking on it and then typing the
name. You can then refer to it by that name in a procedure. For
example, if you label some outputs Red, Amber and Green, this
procedure will implement a traffic light sequence.

Switch Off All
Switch On Red
Wait 5

Switch On Amber
Wait 1

Switch Off All
Switch On Green
Wait 5

Switch Off Green
Switch On Amber
Wait 1

Switch Off Amber
Switch On Red
End

NOTE: The wait values should be set to seconds (Select
General... from the Settings menu to change the wait values to
Seconds or Tenths).

The procedure should go through the sequence from red to green
and back to red again. The first line makes sure that all the

11

outputs are off before starting.
Example - Pelican crossing

This example should help illustrate some of the basic features of
the Control It language.

Specification -

We all know what a pelican crossing does, but it helps to put it
down in black and white before we start trying to write any
procedures.

Normally, the traffic lights are on Green, and the red man is on.

If the button 1s pressed, the traffic lights will go to amber, and
then to red.

the red man then goes off and the green man comes on.

After a delay, the traffic lights go to flashing amber while the
green man flashes.

Finally the traffic lights go to green while the green man goes
off and the red man comes on.

This example 1s best done using sub procedures, that way we
can break the task down into smaller parts which are easier to
program.

These are the procedures
Pelican - The main procedure

sequence - goes through the whole sequence from red to green
and back again.
Flash - flashes the amber light and green man

Bleep - sounds the bleeper while it is safe to cross.

Here's the main procedure - Pelican

12

Switch Off All
Switch On Green
Switch On RedMan
Repeat Forever
if input O on then sequence
Next

The first line switches off all the outputs so that everything is in
a known state. Then the green light and red man are switched
on.

Then we simply go round in a loop testing input 0, if it is on, we
go through the sequence.

The sequence procedure

Switch off Green
Switch on Amber
Wait 30

Switch Off Amber
Switch On Red
Switch Off RedMan
Switch On GreenMan
Bleep

Switch Off Red
Flash

Switch On RedMan
Switch On Green
end

First, the light goes from green to amber, then a pause of three
seconds (Wait 30) this assumes that the wait value is set to
tenths of a second. Select General... from the Settings menu to
bring up a dialogue to set this.

Then from amber to red, and the man goes from red to green.
Then call another sub procedure, Bleep which operates the
bleeper (the number and duration of bleeps will determine the
time allowed to cross the road)

13

Then switch off the red light and call another sub procedure
Flash which flashes the green man and the amber light.
Finally, switch on the red man and the green light, to return to
the original state.

Notice that all procedures must end in an end statement. when
the procedure gets to the end statement, it returns to the
procedure that called it.

Now we need to write the procedures Bleep and Flash
Bleep

Repeat 20
Switch on Bleeper
Wait 5
Switch off Bleeper
Wait 5

Next

End

Flash

Repeat 10
Switch On Amber
Switch On GreenMan
Wait 5
Switch Off Amber
Switch Off GreenMan
Wait 5
Next
End
Remember that the wait values must be set to tenths. Select
General... from the Settings menu.
Also, remember to label all the outputs - Red, Green, Amber,
RedMan, GreenMan, Bleeper.

NOTE: there should be no spaces in RedMan and GreenMan.

14

Examples

The following pages contain ten examples which
introduce most of the features of the Control It PC
language.

Any additional features can be found in the command
reference and in the program help.

15

1. Lighthouse

This is a simple procedure for turning a light on and off.
Build the lighthouse from Lego or similar and attach a bulb to
the top. Connect the bulb to one of the output sockets on the
Control It or Serial Interface.

Build the following procedure (call it 'light")

Switch On 2
Wait 1
Switch Off 2
Wait 1
Switch On 2
Wait 1
Switch Off 2
End

The procedure assumes that Output 2 will be used. Make sure
that the wait values are set to Seconds (select General... in the
Settings Menu). Run the procedure. (Remember to select the
interface from the Configure Menu) The light should flash on
and off twice.

Loops - making the procedure repeat

You can make the procedure repeat any number of times by
using Repeat.

Change the procedure to :-

Repeat 10
Switch On 2
Wait 1
Switch Off 2
Wait 1

Next

End

16

Lighthouse (continued)
Run the procedure, and the light will flash on and off ten times.

Using Repeat, the light flashed ten times instead of twice,
but has used one less line to do it. The word Next
indicates the end of the loop.

You can put any number after Repeat or you can use Repeat
Forever, to make the light flash continuously. In this case
the program can be stopped by using the STOP button.

Labels - giving names to the Outputs.
Click on the label next to Output 2 and type the word LAMP.
Now change the procedure to :-

Repeat 10
Switch On Lamp
Wait 1
Switch Off Lamp
Wait 10

Next

End

Saving the Procedure.

Select the procedure by clicking on its title bar or by selecting it
from the Window menu Select Save/Save As from the File
Menu. Select the destination folder and click OK.

17

2. Traffic lights
This procedure goes through a traffic light sequence.

First, label the lower three outputs, Red, Amber and Green.
Then build this procedure :-

Switch Off All
Switch On Red
Wait 4

Switch On Amber
Wait 1

Switch Off Red
Switch Off Amber
Switch On Green
Wait 4

Switch Off Green
Switch On Amber
Wait 1

Switch Off Amber
Switch On Red

Run the procedure, and it should go through the sequence from
Red to Green and back to Red again. The first line makes sure
that all the lights are off before starting.

To make the sequence repeat continuously, use Repeat as
follows:-

Switch Off Al
Repeat Forever
Switch On Red

Switch Off Amber
Next
End
3. Using Inputs - A Simple Alarm

18

For this procedure, you will need a buzzer and a magnetic
proximity switch or a microswitch.

Attach the proximity switch to a door or window so that the
switch is On when the door 1s shut and Off when it is open.
Connect it to one of the inputs, say Input 1. Connect the buzzer
to one of the outputs, say Output 4; you can label the Output,
'Buzzer'.

Build the following procedure :-

Repeat Forever
If Input 1 On Then Switch Off Buzzer
Else Switch On Buzzer

Next

End

Run the procedure, and the buzzer should sound when the door
is opened. You can use labels on the inputs as well, therefore if
you label Input 1 as 'Door' , you can say :-

If Door On Then Switch Off Buzzer
Using Sub Procedures.

Suppose you want the buzzer to go on and off instead of
sounding a continuous tone.

Build this procedure (call it Buzz)

Repeat Forever
Switch On Buzzer
Wait 5
Switch Off Buzzer
Wait 5

Next

End

Alarm (continued)

19

Then modify the Alarm procedure to :-

Repeat Forever
If Door On then Switch Off Buzzer
Else Buzz

Next

End

Adding other inputs

You can add other sensors to the alarm. for example a pressure
mat. Connect the pressure mat to one of the inputs, and label
that input 'Mat'.

Modify the procedure to

Repeat Forever
If Door On Then Switch Off Buzzer
Else Buzz
If Mat Off Then Switch Off buzzer
Else Buzz

Next

End

Notice that the pressure mat is normally 'Off' but goes to 'On'
when it is stepped on.

20

4. Car Park

This procedure counts the cars going into and coming out from a
car park. You can use a microswitch or a light switch to detect
the cars going in and out. Two bulbs are needed for the
'SPACES' and 'FULL' signs.

Build this procedure:-

Repeat Forever
Let A= Count 1
Let B = Count 2
If (A-B) > 9 Then FullSign
Else SpacesSign
Next
End

and the Sub Procedures FullSign :-

Switch On Full
Switch Off Spaces
End

and SpacesSign :-

Switch On Spaces
Switch Off Full
End

Label one of the outputs 'Spaces' and another 'Full'. The
program assumes that there are ten spaces in the car park.

21

Car Park (continued)

This procedure uses two variables A and B. Variables are used
whenever you need to store or remember a number or perform
calculations - in this case A is the number of cars that have
entered the car park and B is the number of cars that have left.
Here, the 'If' command is used to test the result of a comparison.
i.e. "is (A-B) greater than 9 ?"

You can read more about how Control It PC performs arithmetic
and comparisons in the Arithmetic section.

You can monitor the value of a variable while a procedure is
running, by selecting Variables from the Window menu in the
Control Window.

Note that the sub procedures FullSign and SpacesSign, only
have two lines each (excluding the end statement) The Car Park
program could have been written as one procedure like this :-

Repeat Forever
Let A= Count 1
Let B = Count 2
If (A-B) > 9 Then
Switch On Full
Switch Off Spaces
Else
Switch On Spaces
Switch Off Full
EndlIf
Next
End

This is the long form of the If... Then... Else.. construction
which is :-

22

If [condition] Then
[statement]
[statement]

Else
[statement]
[statement]

The important rule is that the first statement in each block must
be on the line after the 'If' or the line after the 'Else’'.
The EndlIf statement must also be present.

The Else block is optional. 1.e. you can have :-

If [condition]
[statement]
[statement]

23

S. Lift

This program operates a simple two floor lift.

Drum
Motor and Gearbox

Microswitch
-

Lift
Cage

= Microswitch

To build the lift you will need a motor (geared) and a pulley or
drum (cotton reel or similar). The lift cage will need to run
smoothly in a set of guides. You will also need two
microswitches or magnetic proximity switches.

24

Lift (continued)

First write a simple procedure to send the lift to the top.
Connect the motor to Motor C and the top microswitch to Input
1.

Build this procedure (call it 'Up")

Repeat

Motor C Forward
Until Input 1 On
Motor C Off
End

This procedure uses a simple example of feedback, i.e. the effect
of an Output is monitored by an input in order to decide when to
switch the output on or off .

Add two push buttons; one for up and one for down. Connect
them to Inputs 3 and 4, then write the overall lift procedure as
follows :-

Repeat Forever

If Input 3 On then Up

If Input 4 On Then Down
Next
End

'

Before you run this, you should also write the procedure 'Down
which is very similar to 'Up'

Repeat

Motor C Reverse
Until Input 2 On
Motor C Off
End

(Input 2 should be connected to the bottom microswitch)

25

6. Street Lights

This procedure automatically switches on a street light when it
becomes dark. It introduces the use of Analogue Inputs. You
will need a light level sensor.

Connect the sensor to Analogue Channel 1, and a light bulb
representing the street light to Output 1.

Build this procedure:-

Repeat Forever
If Value 1 < 50 Then Switch On 1
Else Switch Off 1

Next

End

When you cover the light sensor the light should come on;
uncover it and the light should go out. (You may have to
experiment with the value in line 2 to get it right).

26

7. More analogue - Temperature Control - A
Greenhouse

This procedure is a temperature control system for a greenhouse.
You will need a 5W bulb as a heater (the small bulbs in the
Deltronics accessory pack are not suitable for this) and a
temperature sensor.

Build a model greenhouse (don't make it too large or it will take
a long time to warm up) and place the bulb and temperature
sensor inside it. Ideally, for demonstration purposes the
temperature sensor should be located at the top,

above the lamp, so that it warms up quickly. In a real greenhouse
it should be located low down so that the whole greenhouse
warms up before the heater switches off.

Temperature
Sensor

Greenhouse

.
ENONE
<\ R IN|
>
Bulb\\\/ |

Connect the bulb to Output 1 and label it 'Heater'. Connect the
temperature sensor to Analogue Channel 1. Select General...
from the Settings Menu and set degrees C instead of 0 to 100% .

27

Greenhouse (continued)
Build this procedure:-

Repeat Forever
If Value 1 > 24 then Switch Off Heater
Else Switch On Heater

Next

End

It will take a few minutes to observe the system switching on
and off, but eventually it should stay within a degree or two of
the value that you set.

28

8. Lift 2 - Adding an extra floor

NOTE: This procedure is unsuitable for the Junior Serial Interface and the PIC
boards because they don’t have enough inputs.

There is an extra problem with having more than two floors. If
you want to go to the middle floor, which way you turn the
motor will depend on whether you are above that floor or below
it. One way of doing this is to have a variable (‘floor') which
records which floor the lift is on.

You will need three inputs for pushbuttons (label them B0, B1
and B2) and three microswitches or proximity switches for the
floors (label them FO, F1 and F2)

The main procedure will look something like this:

Ground
Repeat Forever
If BO On Then Ground
If B1 On Then First
If B2 On Then Second
Next
End

The procedures Ground, First and Second send the lift to
the ground, first and second floors respectively.

The procedures Ground and Second are the easiest to write, and
are the same as 'Up' and 'Down' in the previous lift example.

Ground

Motor A Reverse
Repeat

Until FO On
Motor A Off

Let Floor=0
End

29

Lift 2 (continued)
Second

Motor A Forward
Repeat

Until F2 On
Motor A Off

Let Floor =2
End

Now, the procedure 'First'. Which way we turn the motor (or if
we turn it at all) depends on the variable 'Floor'

First

If Floor = 2 Then Motor A Reverse
If Floor = 0 Then Motor A Forward
If Floor = 1 Then Motor A Off
Repeat

Until F1 On

Motor A Off

Floor =1

End

Notice the line Floor = 1 , the 'Let' was left out, that is because it
1s optional.

30

Lift2 (continued)
Improvements

Add a light to each floor which comes on when the lift arrives;

add a buzzer which sounds when the lift arrives; add a door to
the lift.

The most difficult thing about adding a door is constructing the
door; use a motor with a lot of reduction gearing, and a switch to
detect when the door 1s open (or closed). You can either put
doors on the fixed part of the lift , in which case each floor has
its own door, or you can fit one door to the lift cage, but this
means that the door motor and associated wiring has to be
carried on the lift.

The best way to write the program is to use another two sub
procedures 'Open' and 'Close’.

31

9. Traffic Lights 2

This program implements a road junction with two sets of lights
There are four sub procedures

Procedure R1 sends set 1 to red
Procedure G1 sends set 1 to green
Procedure R2 sends set 2 to red
Procedure G2 sends set 2 to green

Label the Outputs Red1, Amberl, Greenl and Red2, Amber2,
Green2

Procedure R1

Switch Off Green1
Switch On Amber1
Wait 2

Switch Off Amber1
Switch On Red1
End

Procedure G1

Switch On Amber1
Wait 2

Switch Off Red1
Switch Off Amber1
Switch On Green1
End

Procedures R2 and G2 are the same, but use Red2, Green2 etc.

32

Traffic lights 2 (continued)
Main Procedure

Switch Off All
Switch On Red1
Switch On Red2
Repeat Forever

G1

Wait 10

R1

Wait 3

G2

Wait 10

R2

Wait 3
Next
End

Each road has ten seconds of Green light, and there is an overlap
when both sets are on Red for 3 seconds.

33

10. Level Crossing

This program operates a level crossing barrier and lights. You
will need a train set (or at least a short length of track), a
magnetic proximity switch or microswitch to detect the train
coming past a certain point on the track, a motor and gearbox for
the barrier, another switch to detect when the barrier 1s down,
some bulbs and a buzzer.

Connect the train detecting switch to, say Input 1, the barrier
motor to motor A and the 'barrier down' switch to Input 2.

Write the following procedure:-

Repeat
Until Input 1 On
Motor A Forward
Repeat

Flash
Until Input 2 On
Motor A Off
Repeat 20

Flash
Next
Motor A Reverse
Wait 20
Motor A Off
End

Sub procedure 'Flash'

Switch On 3
Wait 3
Switch Off 3
Wait 3

End

34

Level crossing (continued)

For these procedures, the wait values should be set to tenths of a
second. (select General... from the Settings Menu)

The first two lines wait for the train to activate the switch. The
next part starts winding down the barrier and flashing the lights.
The barrier motor 1s stopped when the 'barrier down' switch is
activated, but the lights continue to flash twenty more times.
The motor is then reversed to wind up the barrier. (The wait
value here will depend on the speed of the motor)

The number of repeats after the barrier has come down should
be enough to let the train go past.

The duration of flashes should be kept short, otherwise the
barrier could over-run before it is switched off.

What happens if the train slows down or stops after it has
triggered the switch but before it has reached the crossing?

To overcome this problem, put another switch on the far side of
the crossing and change Repeat 20 to Repeat Until
Input n On where n is the input to which the sensor is
connected.

Improvements

Modify the procedure 'Flash' to operate two lights to flash
alternately (as in a real level crossing). You could also add a
buzzer here.

35

Command Reference

Clear

Clear, clears a specific input counter,

e.g. Clear5

Count

Count represents a count of the number of Off to On transitions
on an input since the last Clear (either by command or by the on
screen button) The form is Count n , where n is the input
number.

Count can be used in any arithmetic expression or logical
expression

e.g. If Count 5> 20 Then Switch Off 2
Let X = Count 3
LetY = Count 1 + Count 2

Do

The Do command is the same as Repeat n (see Repeat). it is
used to repeat a series of commands, a fixed number of times.
The form is

Don
[statement]
[statement]

n is the number of times to repeat the statements.

36

Else

(see If)

End

Every procedure must end in an end command. In the main
procedure, it tells the procedure to stop. In a sub procedure, it
tells the procedure to return to where it was called from. If you
leave out End,

the compiler will assume it, but it is good practice to put and end
statement after all your procedures.

EndDo (see Do)

EndIf (see If)

EndWhile (see While)

EndLoop (see Loop)

Forever

Forever is a keyword used in conjunction with Repeat (see
Repeat)

Forward

Forward is a keyword used in conjunction with Motor (see
Motor)

37

If

If, along with Then is used to construct conditional statements.
The general form is:-

If [Condition] then [Command]

e.g. If Input 1 On Then Switch On 7
If Value 4 < 40 Then Motor A Reverse

The 'Then' is optional, i.e.
If Input 1 On Switch On 7
is the same as: If Input 1 On Then Switch On 7

You can test more than one input at once using the 'and' and 'or'
keywords e.g.

If Input 1 On and Input 2 On Switch on 6
If Input 3 On or Input 6 On Motor A forward

If you want to perform more than one action in an If command,
you can use the long form of the If statement which has the
form:-

If [condition]
[statement]
[statement]

Endlf

The statements must start on the line after the If [condition],
otherwise the compiler will treat it as the short form. You
must include the Endlf to show where the block of
statements ends, and the rest of the procedure begins.

38

An If statement can be used on its own or with an Else
statement.

Else

Else is always used in conjunction with an If statement. An If..
Then.. Else.. construction carries out one action if the 'if'
condition is true or another if it is false.

e.g. If Input 1 on then Switch on 4
Else Switch off 4

The Else must be on the line which immediately follows the If.
Long form of If.. Then.. Else..
If.. Then.. Else.. also has a long form which is:-

If [condition]
[statement]
[statement]

Else
[statement]
[statement]

Endlf

The statements following else must start on the line after the
else, and you must include the EndlIf.

39

Input

Input is always used in conjunction with If, Until or While to
test the state of an input bit.

e.g. IfInput2 On Then
If Input 2 Off Then
Until Input 4 On

You can test more than one input at once using the 'and' and 'or'
keywords e.g.

If Input 1 On and Input 2 On Switch on 6
If Input 3 On or Input 6 On Motor A forward

Inputs

Inputs is used to check the state of all the inputs at once, and is
always used in conjunction with If, Until or While

e.g. If Inputs = 96 Then Switch on 5
Else Switch off 5

If the binary byte represented by the inputs is '96 decimal' then
output 5 will be switched on.

'>'and '<' are not allowed with this command, only '='.

40

Let

Let is used to assign a value to a variable. Variable names can
consist of numbers and letters, but must start with a letter.

The general form is :-
Let [Variable] = [expression]

Variable is any variable name, and expression can be a constant,
another variable, or an arithmetic expression,

c.g. Letfloor =1
Let items = items + 1
LetB=F /3

Let is optional, i.e.

floor = 1
is the same as : Let floor = 1

See the section on Arithmetic for more details.
Loop

Loop can be used to construct a continuous loop, and is
an alternative form of a Repeat Forever loop (see Repeat)

The form 1s :-

Loop
[statement]
[statement]

EndLoop

The only way to stop a Loop is to press the STOP button.

41

Motor

Motor is used to set the state of one of the four motors to Off,
Forward or Reverse,

e.g. Motor A Forward
Motor C Reverse
Motor A Off

Next Next is used in conjunction with Repeat (see
Repeat)
Off

Off is used in conjunction with Input, Switch or Motor (see
the relevant commands)

On

On is used in conjunction with Input or Switch (see Input and
Switch)

Or
Or can be used when testing inputs e.g.

If input 1 on or Input 2 On Then Switch on 4
Switches output 4 on if either input 1 or input 2 is on.

Or is also used in relational expressions (see Arithmetic
section)

42

Output
Output is used to output a byte to the outputs,

e.g. Output 48 causes the binary equivalent of 48 to appear on
the outputs, overriding any previous Switch On or Switch Off
commands. Constants or variables can be used,

ie. LetA=48
Output A

Has the same effect as Output 48

See the section on Arithmetic for more information on variables.

43

Power

Power is used to set the power (speed) of one of the eight
outputs or one of the four motors. It can be used to control
motor speed or lamp brightness.

The general form is :-
Power [n] [p]
n is the output number or motor reference and p is the power,

e.g. Power 3 20
Power B 15
Power 0 31

Power values can range from 0-31. 0 is stationary and 31 is full
speed.

Note: The relevant Motor or output must be switched on before
this command can take effect.

Repeat
Repeat is used along with Until or Next to construct loops.

There are three general forms:-

(a)
Repeat
[statement]

[statement]

Until [Condition]

This repeats all the statements until the condition becomes true.

44

Condition can be a reference to Inputs, Input counts or Values,
or an arithmetic expression.

e.g. Until Value 2 > 28
Until Count 7 = 100
UntilA=7
Until X=Y+3
Until Input 2 On

(b) Repeat n
[statement]
[statement]

Next

This repeats all the statements in-between Repeat and Next, n
times. For example:-

Repeat 4
Switch on 1
Wait 1
Switch off 1
Wait 1

Next

Flashes output 1 on and off four times.

(c) Repeat Forever
[statement]
[statement]

Next

Repeats all the statements in-between Repeat and Next,
'Forever' i.e. until the STOP button is pressed.

45

Reverse
Reverse is used in conjunction with Motor (see Motor)
Switch

Switch is used to switch on or off one of the outputs.
Constants or variables can be used, e.g.

Switch On 5
Switch Off 6

X=5
Switch On X

is the same as: Switch On 5

You can also switch on or off more than one output at a time e.g.
Switch On 2,4,6

Then (see If)

Until (See Repeat)

Value

Value is used to read one of the four analogue channels and is
always used in conjunction with If, Until, While or Let

e.g. If Value 1> 50 Then Switch On 3

46

Value returns values of 0-100 for an input voltage range of 0 to
1.8V. You can make the Value command return a value in
Degrees C

Select General... from the Settings menu and check the Degrees
C button in the Analogue Values box.

Analogue values can also be assigned to variables (See
Arithmetic).

Wait

Wait causes the program to wait for a specified number of tenths
of a second or seconds.

To set Tenths or seconds, Select General... from the Settings
menu and select Tenths or Seconds in the Wait Values Box.

c.g. Wait 20

While
While is used in conjunction with EndWhile to construct loops.
The general form is :-

While [condition]
[statement]
[statement]

EndWhile

Condition can be a reference to Inputs, Input counts or Values,
or an arithmetic expression.

e.g. While Input 2 On
While Count 7 < 100
While A=0
While X<Y+3

The program will repeat the set of statements while the
condition is true 1e until the condition becomes false.

47

Write

Write is used to write text to the screen. The text appears in the
Write Window.

The form 1s:-
Write "[text]"

Where [text] is the text that you want to appear in the Write
Window

c.g. Write "The motor is on"

The Write window will appear automatically if it is not shown.
To show the Write window, select Write from the Window
menu, to hide it, select Write again. Every Write command will
start a new line in the Write window.

To change the font of the text in the Write window, select Write
Font... from the Fonts menu in the Procedures window.

48

Arithmetic

Control It PC can perform integer and Boolean arithmetic.
Variables

Variables are created using the Let command (see Command
Reference). Any reference to a variable not created in this way
will result in a 'Variable not found' error.

c.g. LetA=B+4

would result in an error if B had not previously been referred to
on the left hand side of a Let assignment.

The general form of an arithmetic statement is :-
Let [variable] = [expression]
expression can be a constant e.g. LetA=06
Or another variable e.g. LetA=B
Or a general expression.
e.g. a simple expression has the form
[operand] [operator] [operand]

Each operand can be a variable or constant and operator can be
one of

+o-x

49

The operators perform addition, subtraction, multiplication and
integer division respectively. (Integer division discards the
remainder e.g. 9/ 4 =2)

The Let command can be used to assign one of the Analogue
values to a variable.

e.g. Let V = Value 2
or Let V =Value 1 + 12
Variables can be used as parameters for certain commands.

c.g. Let VAR =5
Switch On VAR

Or
Output VAR

Relation Operators

Relation operators can be used in If, Until or While to test for
various conditions e.g. X > 6

The four relational operators are >, <, = and #.

- "Greater Than"
- "Less Than"

- "Equals”

- "Not Equal to"

H I AV

50

Examples -

If Count1>10
Until X=Y*(A+3)
If Floor # 1

51

