ControllT Python Library

Version 1.0, 5/6/2015

This document describes the Deltronics Python library for the Control and Datacapture Interface and
ControllT Extra. The library uses PyUSB to handle the data communications. This has been tested
on Raspberry Pi (see the installation instructions) and should also work on most Linux distributions.
The library is written for Python 2.7.x. PyUSB reportedly supports Python 3, so it should also be
possible to use the library with Python 3 if PyUSB is installed in the Python 3 path.

Note regarding zero- and one-based indices.

In this library all inputs, outputs and motors are referenced using zero-based indices; however, the
labelling on some Deltronics control interface boxes is one-based. If the box has outputs labelled (for
example) 1, 2, ..., 6, then these will need to be indexed as 0, 1, ..., 5 in any Python program. Some
of the library functions accept (or return) Python lists to describe input and output states; since
Python lists are zero-based, this scheme leads to more consistent code.

Initialization

controlit.initialize()

Set up the connection to the interface. This function should be called before any other functions in
the library.

Output functions

controlit.set_output(ioutput, value)

Set the value of an output. The integer parameter ioutput is a zero-based index, and value is a
boolean — False is off, and True is on.

Example:

controlit.set_output(3, True)

— sets the fourth output (0-based) on. The LED next to output 4 (with one-based labelling) should
illuminate.

controlit.set outputs(vallist)

vallist is a list of boolean output values. The function traverses the list, setting outputs 0, 1, 2 etc
to the values in the list.

Examples

vals = [True, False, False]
controlit.set_outputs(vals)

— sets output 0 on, outputs 1 and 2 off

vals = [True for i in range (0, 16)]
controlit.set_outputs(vals)

— sets outputs 0-15 on (16 outputs are available on ControlIT Extra only).

controlit.clear_outputs()

Turns all outputs off.

Motor Functions

Motors are referred to with a zero-based index. Motor A is index 0, motor B is 1, and so on.

controlit.set_motor_direction(imotor, onoff)

Turns motor imotor (an integer from 0 to 3) on or off (parameter onoff is a boolean). Note that the
speed of the motor defaults to zero.

controlit.set motor_speed(imotor, speed)

Sets the speed of motor imotor (an integer from 0 to 3) to speed (an integer from 0 to 31).

controlit.set_motor_direction(imotor, direction)

Sets the direction of motor imotor (an integer from 0 to 3) — direction is an integer which must be
set to 0 or 1.

Digital Input Functions

controlit.get_inputs()

Returns a Python list of boolean values corresponding to the inputs. This has 6 or 16 values, corre-
sponding to the number of inputs on the interface box.

Example: Testing whether inputs 0 and 4 are on

inputList = controlit.get_inputs ()

if (inputList [0] and inputList [4]):
print "inputs O and 4 on"

controlit.get_input(iinput)

Returns a boolean value corresponding to the input at iinput (a zero-based index).

Analogue Input Functions

controlit.get_analogue_data(port)

Returns an integer corresponding to the value of the digitised analgoue input at port (a zero-based
index). The A-D converter returns a 10-bit value, so the integer will be in the range 0 — 219 — 1
(0-1023).

controlit.get_analogue_sensor_id(port)

Returns an integer which uniquely identifies the type of sensor attached to analogue input port (a
0-based index).

Example program

This simple program updates the interface on an infinite loop, using the time.sleep() function to set
the rate of updates to 100 per second. The program sequences the output lights, and reverses the
direction of the sequence if input 0 on the control box is on.

import controlit as ci
import time

initialize the interface
ci.initialize ()

i=0
direction = 1

while (True):
i += direction

clamp i between O and 5

if (1 > 5):
i -= 6

if (i <0)
i += 6

set all outputs false
ci.clear_outputs ()
set output i on
ci.set_output(i, True)

reverse direction is input O is connected
if (ci.get_input(0)):

direction = -1
else:

direction = 1

sleep for 1/100 second
time.sleep(0.01)

